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I. Introduction

Theoretical and experimental studies show that the nonlinear joint transform correlator

(JTC) produces good correlation performance. Nonlinear correlators produce good

correlation performance in the areas of peak intensity, peak to sidelobe ratio, correlation

width, and discrimination against similar targets.'- 9 In nonlinear joint transform correlators

(JTC), the nonlinearity is used at the Fourier plane of the JTCI0 to nonlinearly transform the

joint power spectrum.

In this report, we provide an experimental investigation of the effects of nonlinear

transformation of the joint power spectrum on the performance of the JTC. Experiments are

used to determine the correlation peak intensity, signal to noise ratio (SNR), peak to sidelobe

ratio (PSR), and correlation width for various degrees of the nonlinearity used at the Fourier

plane. The experiments are performed both in the absence and the presence of the input scene

noise. The experiments show that for the images used here, nonlinear compression of the

joint power spectrum is necessary to pull the signal out of scene noise and produce a peak to

sidelobe ratio of larger than unity.

In addition, we provide an experimental investigation of the nonlinear JTC sensitivity to

the scaling and rotation changes of the input objects for various degrees of nonlinearity

applied to the joint power spectrum. The spatial light modulator (SLM) used at the Fourier

plane is a Hughes liquid crystal light valveI (LCLV) operating in different degrees of

nonlinear mode. The LCLV is operated in different degrees of nonlinear mode by adjusting

its bias supply frequency. The experiments indicate that, as the severity of the nonlinear

transformation of the joint power spectrum increases, the sensitivity of the nonlinear JTC to

the scaling and rotation changes of the input objects increases. However, the nonlinear JTC

may produce a better peak to sidelobe ratio in the presence of input signal rotation/scale

changes. These experiments are important in the design of distortion invariant pattern



recognition systems.

The effects of the modulation transfer function (MTF) of the SLM on the nonlinear JTC

performance are discussed. It will be shown that the MTF of the SLM limits the separation

of the objects in the input plane. It also affects the correlation signals produced by the

multiple targets input images.

I1. Review

The implementation of the nonlinear JTC using an optically addressed SLM in the Fourier

plane is shown in Fig. (1). Plane P1 is the input plane that contains the reference signal

r(x+xo,y) and the input signal s(x-x0,y). The Fourier transform interference is displayed at

the input of the liquid crystal light valve (LCLV) to obtain the intensity of the Fourier

transform interference.The joint power spectrum of the reference signal and input signal

function is:

E(a,p)=S2(a,p)+R2 (a, )+2S(a,P)R( a, )cos[2xoa+C+ s(a ,tp)-(I)R( a,p )] (1)

where (a•3) are the spatial frequency coordinates, and S(a,P)ei~s(a,4•) and R(aj)ei#R(a.P)

correspond to the Fourier transforms of the input signal s(x,y) and reference signal r(x,y),

respectively. The LCLV applies a nonlinear transformation to the joint power spectrum

according to the nonlinear characteristics of the device. The nonlinear characteristics of the

device is denoted by g(E) where E is the joint power spectrum. The LCLV output can be

considered as the output of a nonlinear system: I

cc

g(E)= 3" H,[R(t,,),S(tl)]cos[2vxoa3+)s(,1)-VOR(CtP)] (2)
V=2



where

Hv[R(a,[),S(a,)])J=-i)v G(w)exp{io[R 2(af)+S2(a,p)]}Jv[2oR(a,p)S(a,[)ldwo (3)

Here G(w) is the Fourier transform of the nonlinearity. In this paper, we will consider the

rotation and scale sensitivity of the first order correlation signal for v=1. Varying the severity

of the nonlinearity will produce correlation signals with different characteristics. ' In the

experiments, the optically addressed SLM operating in a nonlinear mode may be used to

nonlinearly transform the joint power spectrum. For highly nonlinear transformations, the

high spatial frequencies are emphasized and the conrelation becomes more sensitive in

discrimination to similar targets.

III. Experiments

In Fig. 1, an argon ion laser (X =514 nm) is expanded and collimated. It is passed

through a photographic transparency (Kodak Black-and-white Negative Film 5060)

containing the reference image and the input image. The images used in the correlation tests

are shown in Fig. 2. The tank without background is the reference image. The sizes of the

reference image and the input image are 2mm x 3mm and 3mm x 5mm, respectively. The

separation of the input image and the reference image is 3mm. A Fourier transform lens

(FTL1) with focal length of fl=1000mm is placed behind the transparency. The use of a lens

with long focal length is due to the consideration of the limited resolution of the LCLV used

in the experiments. A He-Ne laser beam (X=633 nm) is expanded, collimated, and used as

the read-out beam of the LCLV. The intensity of the read-out beam is approximately

25t&W/cm 2 over the aperture size (25mm x 25mm) of the LCLV. A second Fourier transform

3



lens (FFL2) with focal length f2=400mm is placed behind the beam splitter.

The input-output characteristic of the LCLV was tested for three bias supply frequencies

applied to the LCLV as shown in Fig. 3. In Fig. 3, the readout amplitude values of the LCLV

were measured for varying writing light intensities when the LCLV was operated in 10 Vrms

power supply and three different supply frequencies applied to the LCLV 12. The tests were

performed for the central part of the device with an area of 2 mm2. There were small

variations for different parts of the SLM because of the non-uniformity of the device. The

readout amplitude values of the LCLV were normalized to 5 [LW/cm 2. It can be seen from

Fig. 3 that lowering the frequency of the bias voltage increases the nonlinearity of the

input-output characteristics of the LCLV. When the LCLV is used in the Fourier plane of the

JTC, these curves represent an approximation of the nonlinear transformation of the joint

power spectrum.

In the experiments, we tested the correlation peak intensity and the correlation peak to

sidelobe ratio of the JTC in the presence of the scaling and rotation of the input signal. The

reference signal was fixed. The tests were performed for two cases: 1) correlation of the tank

and the tank, and 2) correlation of the tank and the tank in the input scene noise[see Fig. 2].

The 3-D plots are normalized to a maximum value of unity. The DC terms are not shown in

the 3-D correlation plots. The 3-D correlation plots were captured from optical experimental

results using a CCD camera and a frame grabber interfaced with a computer. The

correlation area covered by the plots is 64X64 pixels and the output plane is 512X512

pixels.

Figs. 4(a) and 5(a) illustrate the values of the normalized correlation peak intensity and

the correlation peak to sidelobe ratio (PSR) versus scaling of the input signal for the

correlation of the tank and the tank, respectively. The PSR is defined as the ratio of the

correlation peak intensity to the noise intensity average values around the correlation peak:

4



PSR= 1INi • )1a (4)
.• "n(xi.Yj)/t;;d2

i $

where I(xiyj) is the correlation peak intensity, n(xi,Yj) is the noise intensity outside the

50% response portion of the correlation peak intensity, N1 and N2 are the total number of

pixels of the area where correlation peak is measured, and N'1 and N'2 are the number of

pixels under the 50% response portion of the correlation spot. Here, we use NI=N2=64

pixels.

Figs. 4(b) and 5(b) illustrate the values of the normalized correlation peak intensity and

the correlatior PSR versus scaling of the input signal for the correlation of the tank and the

tank in the input scene noise, respectively. It can be seen from these figures that, as the

severity of the nonlinear transformation increases, the correlation sensitivity increases to the

scaling changes of the input signal. For operation along the same nonlinear curve, the joint

transform correlation of the tank and the tank in input scene noise is more sensitive to the

scaling changes than the joint transform correlation of the tank and the tank without noise. As

the scaling factor increases, the correlation peak intensity and the PSR decrease. However,

the PSR for the nonlinear cases remain larger than unity for a scaling change of up to 20%.

Figures 6 illustrates the nonlinear JTC output of the tank and the tank in the input scene

noise for no rotational or scale changes of the input image. In Fig. 6(a), the liquid crystal

light valve is operating along the 200Hz curve. In Fig. 6(b), the liquid crystal light valve is

operating along the 60Hz curve. The 3-D plots of the correlation signals are also shown.

For comparison, Fig. 7 illustrates the nonlinear JTC output of the tank and the tank in the

input scene noise for a scale change of 1.05 of the input image. In Fig. 7(a), the liquid

crystal light valve is operating along the 200Hz curve. In Fig. 7(b), the liquid crystal light

valve is operating along the 60Hz curve.
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The effects of the rotation of the input signal on the correlation peak intensity and the

correlation PSR for the correlation of the tank and the tank is shown in Figs. 8(a) and 9(a),

respectively. Figs. 8(b) and 9(b) illustrate the effects of the rotation of the input signal on

the correlation peak intensity and the correlation PSR for the correlation of the tank and the

tank in the input scene noise, respectively. It can be seen that, as the severity of the nonlinear

transformation increases, the correlation sensitivity increases to the rotational changes of the

input signal. For operation along the same nonlinear curve, the correlation of the tank and

the tank in the input scene noise is more rotationally sensitive than the correlation of the tank

and the tank. The PSRs for both nonlinear cases remain larger than unity for up to four

degrees of rotation.

Figure (10) illustrates the photographs and the 3-D plots of the nonlinear JTC output of

the tank and the tank in the input scene noise for a rotational change of 2 degrees. In Fig.

10(a), the liquid crystal light valve is operating along the 200Hz curve. In Fig. 10(b), the

liquid crystal light valve is operating along the 60Hz curve.

Experiments are performed to investigate the effects of the spatial frequency response of

the Fourier plane SLM on the correlation signals. The modulation transfer function13 (MTF)

is used to represent the spatial frequency response of the device. To measure the MTF, a

Ronchi grating was generated by the computer and was displayed on the monitor. Then the

grating function was imaged onto the input of the LCLV. The grating function was read out

and the first order diffraction was recorded at the Fourier plane. The measurements were

repeated for different spatial frequencies of the Ronchi grating. The normalized intensity of

the first order diffraction, as a function of the grating spatial frequency is shown in Fig. 11.

The intensity is normalized by the maximum intensity at the DC spatial frequency multiplied

by 100. This curve represents the MTF of the LCLV used in our experiments. For joint

power spectrum spatial frequencies larger than 15 lp/mm, the device response decreases
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rapidly. A modulation of 50% is obtained at 18 lp/mm and a modulation of 80% is obtained

at 13 lp/mm. We may limit the maximum spatial frequency of the input joint power spectrum

to the frequency where the normalized MTF of the LCLV drops down to 80%. This may

reduce the effect of the MTF on the correlation performance The cut-off frequency of the

SLM is defined as the frequency where the normalized MTF value drops down to less than

5%. For the LCLV used in our experiments, the cutoff frequency is over 30 lp/mm.

The joint power spectrum is expressed by Eq. (1). We assume that the Fourier

magnitudes and the Fourier phases of the input signal and the reference signal are slowly

varying compared with cos(2xoa). Under these conditions, the frequency of the interference

intensity is approximated by 2X0__,where X is the write-in light wavelength and f is the focal
Xf

length of the Fourier transform lens. This frequency must be less than the cutoff frequency
of the LCLV (ptt) to produce a correlation response; i.e., 2--1Xm. For the images used in

Xf
the experiments, 2x0<15.4 mm.

The separation of the reference object and the input target closest to the optical axis must

be large enough to avoid the overlap of the correlation peaks and the DC terms. Given a

reference object r(x+x0, y) and a single input signal s(x-x0,y), the separation condition for a

linear JTC requires that:

2xoO: 1 L44+3L.s) (5)
2

where Lr and Ls are the widths of the reference signal and the input signal, respectively. In

the experiments, we used Lr=2mm and Ls=3mm. For the linear JTC, a separation of

2x0-5.5mm is obtained for a single input signal. The correlation width of the nonlinear JTC

(for severe compression) is much narrower than that produced by the linear JTC. Thus, for a

single input signal, the separation of the input images can be made smaller than the

7



requirement in Eq.(5). In the experiments, we used 2x0=3mm. The LCLV used in our

experiments produced a somewhat large DC on the optical axis at the output plane. The on

axis DC term had to be considered in choosing xO.

As the separation of the input image and the reference image increases, the spatial carrier

frequency of the joint power spectrum increases. The MTF value is reduced as the spatial

carrier frequencies is increased, which degrades the correlation response and reduces the

correlation amplitude.

Suppose that the MTF amplitude of the LCLV is M(cz,43). The effective joint power

spectrum using Eq. (1) is:13

R2(a )+2S(a43)R(ct,3 )M(--,)cos[2xOa+4Ps(a,p)-4IR(a,P)],

Xf

(6)

where it is assumed that the amplitudes and the phases of the signals Fourier transforms vary

slowly compared with 2x0 and only the MTF amplitude is considered.

We tested the effect of the separation of the input signal and the reference signal for the

image shown in Fig. (2). The correlation peak intensity was measured when the LCLV was

operated along the 60Hz curve. Figure. (12) illustrates the normalized correlation peak

intensity of the tank and the tank in the input scene noise, versus the separation of the

reference image and the input image. It can be seen from this figure that, as the input signals

separation increases, the correlation peak intensity decreases. Due to the non-uniform

illumination of a Gaussian beam profile at the input plane, the correlation peak intensity will

decrease as the separation of the reference and input object increases 6. The experimental

results presented in Fig. 12 take into account both the Gaussian profile of the illumination

and the MTF of the LCLV. When the signals separation is larger than 6mm, the correlation

peak intensity decreases rapidly. The signals separation of 6mm corresponds to a spatial
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trequency of 12 lp/mm which places the joint power spectrum at the 80% response portion

of the MTF.

When multiple targets are present in the input scene, the targets are located in different

positions. Each target generates a different spatial carrier frequency in the joint power

spectrum. The carrier frequency due to each target depends on the position of the target in the

input scene and the location of the reference image. The frequency response magnitude of the

device (MTF) will vary for different spatial carrier frequencies representing different targets.

For the targets that are farther away from the reference image, a larger carrier frequency is

generated and the MTF magnitude becomes smaller. The effect is a reduction in the

correlation peak intensity as the input target separation from the optical axis increases.

We assume that multiple targets [sl(x-xl,y-yl), s2(x-x2,y-y2),...sn(X-Xn,y-yn)] are

present in the input scene and that the reference image is r(x-x0,y-y0). In this case, the

output signal contains the following terms:2

1) The autocorrelations of the reference image [Rr(xy)] and the autocorrelations of the input

targets [Rsisi(x,y), i=1,2,...n,]; 2) The cross-correlations between the reference image and

the input targets [Rrsi(xy), i=1,2,...n]; and 3) The cross-correlations between the different

targets [Rsisj(x,y), ij, i=1,2...n, j=1,2,..n].

The autocorrelation terms in (1) are diffracted on the optical axis at the output plane. The

correlation functions between the reference image and the input targets [Rrsi] and the

correlation functions between the different targets [Rsis ] may overlap unless the input scene

targets are placed sufficiently far from the reference image. The required separation between

the input images and the reference image can be expressed as:

max (Dsisj) < min (Dsir) (ij=1,2,...n) (7)

where Dsisj is the distance between any two of the targets si and sj, and Dsir is the distance

9



between the reference image and any one of the targets si in the input scene. Here, it is

assumed that the width of the nonlinear correlation signals are narrow compared with the

input signals separations.

We have performed correlation experiments for multiple targets in the input scene to test

the effect of the LCLV spatial frequency response (MTF) on the correlation peak intensity.

The reference object was the tank image and the input targets were three tanks as shown in

Fig. (13). The reference object is denoted by r, and the input targets are denoted by s1 , s2,

and s%. The spacing of the multiple targets in Fig. 13 is as follows: the distance between s1

and s2 is d, the distance between s2 and s3 is 2d, and the distance between r and s, is 4d.

Here, d=1.5 mm. Nonlinear JTC experiments were performed by using the saturation

property of the input-output characteristics of the LCLV to threshold the joint power

spectrum. In the multiple targets JTC experiments, the power supply voltage of the LCLV

was 10 Vrms and the supply frequency was 60 Hz. The input-output characteristics of the

LCLV for 60 Hz is shown in Fig. (3). The input light illumination to the LCLV was

adjusted by a neutral density filter to place the joint power spectrum distribution in the

saturation region of the LCLV input-output characteristic. 3 The joint power spectrum is

nonlinearly transformed to produce the nonlinear correlation signals.

Figure (14) presents the photograph of the nonlinear JTC output and the corresponding

3-D mesh plot of the output. The outer three correlation peaks ( denoted by rs 1, rs2 and

rs3) correspond to the correlations between the reference tank (r) and the input tanks (sl, s2

and s3). The other three correlation peaks near the optical axis (s 1s2, Sls3 , and s2s3)

correspond to the correlations between the targets in the input scene.

It is evident from Fig. (14) that the correlation intensities of the targets decrease as their

separations from the optical axis increase. Since the frequency response of the device and the

Gaussian profile of the illumination are known, the peak intensity decrease may be

10



compensated by post processing in the correlation plane. The MTF effect of the device and

the non-uniform effect of the illumination may be compensated as long as the correlation

peak to sidelobe ratio is larger than unity.

IV. Summary

we have provided an experimental investigation of the JTC sensitivity to the scaling and

rotation changes of the input objects for various degrees of nonlinearity applied to the joint

power spectrum. Experiments are used to determine the correlation peak intensity for

various degrees of the nonlinearity used at the Fourier plane. The experimental results

indicate that, as the severity of the nonlinear transformation of the joint power spectrum

increases, the sensitivity of the nonlinear JTC to the scaling and rotation changes of the input

objects increases. Both the correlation peak intensity and the correlation peak to sidelobe

ration are determined by experiments.

The effect of the limited spatial frequency response of the Fourier plane SLM on the

separation of the input targets from the optical axis is investigated. Experiments are provided

to show that the modulation transfer function of the SLM results in a reduction in the

correlation peak intensity as the separation between the input image and the reference image

increases. Nonlinear JTC experiment using a multiple targets input image is used to illustrate

the decrease in the correlation peak intensity of the targets that are farther away from the

optical axis.
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Figure 2. Image used in the correlation tests. The tank is the reterence image.
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LCLV 1/0 Characteristic Curve
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Figure 3. Input-output characteristic curves of the LCLV for three different power supply

frequencies applied to the LCLV. The bias supply voltage is 1OVrms.
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Figure 4(a). Variations in the normalized correlation peak intensity versus the scale factor of

the input signal for correlation of the tank and the tank. Triangles correspond to

the 200Hz curve, circles correspond to the 120 Hz curve, and crosses

correspond to the 60Hz curve.
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Figure 4(b). The same as Fig. 4(a), except for correlation of the tank and the tank in the

input scene noise.
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Figure 5(a). Variations in the correlation peak to sidelobe ratio versus the scale factor of

the input signal for correlation of the tank and the tank. Triangles correspond to

the 200Hz curve, circles correspond to the 120 Hz curve, and crosses

correspond to the 60Hz curve.
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Figure 5(b). The same as Fig. 5(a), except for correlation of the tank and the tank in the

input scene noise.
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Correlation signal Correlation signal

Correlation signal

Figure 6(a). Photograph of the nonlinear JTC output of the tank and the tank in the input

scene noise for no rotational or scale changes of the input image. The liquid

crystal light valve is operating along the 2(0llz curve. The 3-D plots

of the correlation signals are also shown. The 3-D plots are normalized to a

maximum value of unity. The DC terms are not shown in the 3-D plots.
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C lation sigl Correlation signal

Correlation signal

Figure 6(b). The same as Fig. 6(a), except that the liquid crystal light valve is operating along

the 60Hz curve.
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Correlation signal

Correlation signal

Figure 7(a). Photograph of the nonlinear JTC output of the tank and the tank in the input

scene noise for a scaling change of 1.05. The liquid crystal light valve is

operating along the 200Hz curve. The 3-D plots of the correlation signals

are also shown. The 3-D plots are nomialized to a maximunm value of unity. The

DC terms are not shown in the 3-D plots.
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Correlation signal

Figure 7(b). The same as Fig. 7(a), except that the liquid crystal light valve is operating along

the 60Hz curve.
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Figure 8(a). Variations in the normalized correlation peak intensity versus the rotation factor

of the input signal for correlation of the tank and the tank. Triangles correspond

to the 200Hz curve, circles correspond to the 120 Hz curve, and crosses

correspond to the 60Hz curve.
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Figure 8(b). The same as Fig. 8(a), except for correlation of the tank and the tank in the

input scene noise.
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Figure 9(a). Variations in the correlation peak to sidelobe ratio versus the rotation factor

of the input signal for correlation of the tank and the tank. Triangles correspond

to the 200Hz curve, circles correspond to the 120 Hz curve, and crosses

correspond to the 60Hz curve.
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Figure 9(b). The same as Fig. 9(a), except for correlation of the tank and the tank in the

input scene noise.
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Correlation signal

Figure 10(a). Photograph of the nonlinear JTC output of the tank and the tank in the input

scene noise for a rotational change of 2 degrees. The liquid crystal light valve

(LCLV) is operating along the 200Hz curve.The 3-D plots of the correlation

signals are also shown. The 3-D plots are normalized to a maximum value of

unity. The DC terms are not shown in the 3-D plots.
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Correlation signal

Figure 10(b). The same as Fig. 10(a), except that the liquid crystal light valve (I.CLV) is

operating along the 60Hz curve.
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Figure 11. Modulation Transfer Function (MTF) of the liquid crystal light valve (LCLV)

used in the experiments.
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Figure 12. Normalized correlation peak intensity versus the separation of the input objects.
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(S3)

input targets.

(S2)

( reference object

Figure 13. The reference object and the input targets for a multiobject nonlinear JTC

experiment. The reference object is denoted by r, and the input targets are denoted

by stI s2, and s3.
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Figure 14. Photograph of the nonlinear JTC output of the tank and the input scene with

three tanks [see Fig. (13)1. The 3-D plot of nonlinear JTC output is also

shown. The correlations between the reference object and the input targets arc

denoted by rsi , and the correlations between the input targets are denoted by si sj
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